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ABSTRACT

Transformer is an essential component in the distribution power system. Therefore, any

damage to the transformers will hamper the distribution of electricity towards the con-

sumers. For example, high temperature in transformers can result in the degradation

of transformer insulation, in turn causing its failure. This will also cause a disturbance

in electrical power system and result in a major economic loss. To circumvent the dis-

aster, transformers need to undergo preventive and reactive maintenance, until it is no

longer efficient. Many evaluation methodologies have been investigated and developed

to evaluate transformer health. These technologies will assist transformer operators in

forecasting the distribution transformer’s state and successfully responding.

This work reviews advances in estimating the health of a three phase distribution

transformer. It also attempts to evaluate recent methods in health index estimation and

monitoring, primarily related to machine learning. Finally, a dataset generation paradigm

is discussed, which is also used for testing and comparing different approaches. This

dataset is built upon a set of prescribed standards by various governing bodies, in the

field of Electrical Engineering.
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Chapter 1

Introduction

Energy has become a basic necessity today. We can’t imagine a day without electricity.

Be it a person working in an IT company or a farmer, everyone requires electricity. It is

a necessary commodity for modern economies to survive. As a consequence, a healthy

power system is critical for ensuring a steady supply of electricity.

Transformer plays an important role in transmission of electricity. It links the energy

transmission from generation station to all the way to end users like us. But during the

event, transformers may fail due to various reasons which results in utilities experiencing

major loss such as loss of revenue and market backlash. These problems aren’t limited to

utilities only, it affects consumer as well. The consumer could face an electrical shortage

or fluctuations in supply can damage the equipments installed. This could lead to shut-

down of industries, hampering production and leading to unemployment. As a result

Transformer Asset Management is of prime importance to prevent suddenly occurring

failures of transformers.

A proper asset management will allow quality assessment of conditions and to de-

velop future management strategies of transformers. But for that we first need to under-

stand and identify the root cause of failures in transformers. Authors in [1] presented

the statistical data of component failures from 350 transformers to establish a three-level

model of failure mechanism, failure linkages, and failure modes. It was found out that

the most critical to power transformer health is insulation with an incident rate of about

41%; then, components showing high failure rates are windings, 14%, bushings, 13%,

and on-load tap changers at about 10%. Other components such as the cooling system,
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Table 1.1: Number of power transformer failure per voltage population during 2009–2013

Years 400−
230kV

230−
110kV

110−
66kV

110−
33kV

110−
22kV

110−
11kV

66−
11kV

33−
11kV

Total

Fail-

ures

2009 0 0 0 0 3 7 0 11 21

2010 0 1 1 9 9 6 0 15 41

2011 0 1 0 10 8 11 0 14 44

2012 0 0 0 10 7 8 0 16 41

2013 0 2 1 13 8 9 1 15 49

Total 0 4 2 42 35 41 1 71 196

core, and operational errors do not have a significant impact. This is shown in Figure 1.1.

Figure 1.1: Failure statistics of power transformer component based failures [1]

Investigating data from transformers supervisors in utilities, component failures of

transformers, failure rate and operation impact level is shown in Table 1.1

1.1 Condition Monitoring

ConditionMonitoring (CM) is a field in electrical engineering, dealing with monitoring of

parameters of a machine, to identify significant changes, that might be indicative of a de-

veloping fault. It is a major component of Predictive Maintenance (PdM). The monitoring

of the electrical system can either be done offline or online.

1.1.1 Offline Condition Monitoring

Offline ConditionMonitoring is the monitoring of a machine or production process under

the outage condition i.e. whenever the equipment is in off condition. A shutdown is

2



necessary for off line Condition Monitoring. The Offline Condition Monitoring analysis

system will generate and collect data during start-up and shutdown of the installation.

There are different kind of test that are carried out in offline condition monitoring which

has been listed as follows:

1. Routine Tests: Routine tests are performed during manufacturing on all equip-

ment after the active part assembly completed.

2. Type Tests: Type tests are tests which are made on equipment representative of

other equipment to demonstrate that they comply with specified requirements not

covered by routine tests.

3. Special Tests: Special Tests are test, other than Routine or Type tests, agreed be-

tween manufacturer and purchaser.

Beside these tests there are some other test which do not fall under any of the above

mentioned categories and which are done at site:

1. Pre - commissioning Tests

2. Periodic/Condition Monitoring Tests

3. Emergency Tests

Offline test can be performed when the machine is not in working condition. It requires

the electrical equipment to be in off state in order to be able to perform the test. Moreover,

a number of test has to be performed, which requires more number of sensors, in order

to get a clear picture of the health of electrical equipment. This increases the cost of

condition monitoring which is not desired. So we go for online condition monitoring

techniques.

1.1.2 Online Condition Monitoring

Online ConditionMonitoring is the monitoring of a machine or production process under

the starting as well as running condition i.e. whenever the equipment is in on condition.

The Online Condition Monitoring analysis system will generate and collect data during

starting and running or performing condition. Major components of online Condition

Monitoring are:

3



1. Sensors for measurement of various parameters

2. Data Collection and Processing System for Decision making

3. Display/Execution System for Implementation of Decision

Our thesis deals primarily with online condition monitoring, using latest proposed

approaches with machine learning. However, to shed some light on the most commonly

use offline techniques, we move on to explaining some of them.

1.1.3 Sweep Frequency Response Analysis (SFRA)

Figure 1.2: SFRA Analysis in Transformer

Thewindings of transformer or alternator rotorsmaybe exposed tomechanical stresses

during unsafe transportation, lightning impulse, heavy short circuit faults, transient switch-

ing impulses, and DC component. SFRA Test is used to find out physical condition of

transformer windings and Alternator Rotor’s windings.

The SFRA idea is very simple and straightforward. As is well known, two parallel

electrodes work as a capacitor even when the dielectric medium is air. However, in this

case, the windings are insulated with paper and mica or varnish. Insulation will function

as a dielectric medium. The winding itself causes capacitance between them, resulting in

the formation of a distributed network. Furthermore, all electrical devices have certain

resistance, inductance, and capacitance values, thus each of them can be thought of as

a complex RLC circuit (Figure 1.3). Resistance, inductance, and capacitance should all

4



Figure 1.3: Equivalent Circuit as Interpreted by SFRA Test

be equal to zero. In reality, however, an ideal machine cannot be built. An equipment’s

resistance, inductance, and capacitance are not equal to zero.

The transformer is seen as a complex impedance circuit. Open (magnetization impedance)

and Short (short-circuit impedance) responses are measured over a wide frequency range

and the results are presented as magnitude response (transfer function) in dB. Changes in

the impedance/transfer function can be detected and compared over time, between test

objects or within test objects. The method is unique in its ability to detect a variety of

winding faults, core issues and other electromechanical faults in one test.

Experience has shown that different sub-bands are dominated by different internal

components of the transformer and are subsequently more sensitive to different types of

failures. Table 1.2 shows some band frequencies and their interpretations.

A sample of the frequency spectrum obtained is shown in Figure 1.4.

Figure 1.4: Equivalent Circuit as Interpreted by SFRA Test

More information regarding the test is available on IEC 60076-5: ‘Power Transformer-
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Table 1.2: Frequency Sub - band Sensitivity

Region Frequency Sub

- band

Component Failure Sensi-

tivity

1 <2 kHz Main core

bulk and

winding in-

ductance

Core de-

formation,

open circuits,

shorted turns

and residual

magnetism

2 2 kHz - 20 kHz Bulk com-

ponent

and shunt

impedances

Bulk winding

movement

between

windings

and clamping

structure

3 20 kHz - 400
kHz

Main wind-

ings

Deformation

within the

main or top

windings

4 400 kHz - 1
MHz

Main wind-

ings, top

windings and

internal leads

Movement

of the main

and top wind-

ing, ground

impedance

variations

Part 5: Ability to withstand Short Circuit’ [2].

1.1.4 Dissolved Gas Analysis (DGA)

DGA is an examination of electrical transformer oil contaminants. Insulating materials

(oil, paper, cotton tapes, press boards, wood, etc.) within electrical equipment liberate

gases as they slowly break down over time.

Generally, the gases found in the oil in service are hydrogen (H2), methane (CH4),

Ethane (C2H6), ethylene (C2H4), acetylene (C2H2), carbon monoxide (CO), carbon dioxide

(CO2), nitrogen (N2) and oxygen(O2).

The composition and distribution of these dissolved gases are indicators of the effects

of deterioration, such as pyrolysis or partial discharge, and the rate of gas generation

indicates the severity.

By analyzing the volume, types, proportions, and rate of production of dissolved
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Table 1.3: Key Gas Concentrations as per Different Kinds of Faults

Gas Normal Limit

(ppm)

Action Limit

(ppm)

Potential Fault

Type

Hydrogen

(H2)

150 1, 000 Corona, Arc-

ing

Methane

(CH4)

25 80 Sparking

Acetylene

(C2H2)

15 70 Arcing

Ethylene

(C2H4)

20 150 Severe Over-

heating

Ethane (C2H6) 10 35 Local Over-

heating

Carbon

Monoxide

(CO)

500 1, 000 Severe Over-

heating

Carbon Diox-

ide (CO2)

10, 000 15, 000 Severe Over-

heating

Total Com-

bustibles

(TDCG)

720 4, 630

gases, much diagnostic information can be gathered. Since these gases can reveal the

faults of a transformer, they are known as "fault gases". Gases are produced by oxidation,

vaporization, insulation decomposition, oil breakdown and electrolytic action. Table 1.3

shows the type of fault, associated with different gas concentrations.

As the value exceeds the ’Normal Limit’, sample frequency should be increased with

consideration given to planned outage in near term for further evaluation. If the value

goes beyond the ’Action Limit’, removal of transformer from the surface must be consid-

ered.

While DGA is categorized under offline condition monitoring, it is possible now to

even perform this test in online condition.

More information regarding the test is available on IEC 60599 [3], IEEE C57.104 [4]

and CIGRE 296 [5].
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Figure 1.5: Chemical Structure of Furan C4H4O

Table 1.4: Furan Compounds against Different Kinds of Faults

Compound Name Abbreviation Potential Fault Type

5-Hydroxymethyl-2-
furaldehyde

5H2F Oxidation

Furfuryl Alcohol 2FOL High Moisture

2-Furaldehyde 2FAL Overheating, old

faults

2-Furyl methyl Ke-

tone

2ACF Rare, lightening

5-Methyl-2-
furaldehyde

5M2F Local, severe over-

heating

1.1.5 Furan Analysis and Degree of Polymerization (DP)

Furan is a heterocyclic chemical molecule made up of a five-membered aromatic ring with

four carbon atoms and one oxygen atom (Figure 1.5).

This chemical substance is generatedwhen a cellulosemolecule depolymerizes (breaks

into smaller lengths or ring configurations). The overall DP of paper insulation can be

deduced with a high degree of certainty by examining the quantity and kinds of furans

present in a transformer oil sample. Furan types and concentrations in oil samples can

also indicate abnormal stress in a transformer, whether it’s intense, short-term overheat-

ing or long-term, general overheating. The type of defect caused by the presence of dis-

tinct chemical structures of the furan compound is shown in Table 1.4.

Degree of Polymerization (DP) test is a measure of length of cellulose chains. Paper

which is used as an insulation in transformer. Its insulation degradation is accelerated by

temperature, water and oxygen and byproducts formed areWater, CarbonOxides, Furans,

Alcohols, Acids and Aromatic and Aliphatic Hydrocarbons. A DP value of 800− 1200 is

an indication of paper insulation of healthy transformer whereas DP value less than 200

8



indicates end of life criteria for paper insulation.

1.1.6 Thermography

The term "Thermography” refers to the capturing of thermal patterns and data emitted

by an object with the use of an infrared imaging and measurement camera. An image is

then produced with the camera that can give you data that is otherwise unattainable.

Infrared radiation is that portion of the electromagnetic spectrum that extends from

the long wavelength, or red, end of the visible-light range to the microwave range (Figure

1.6).

Figure 1.6: Electromagnetic Spectrum

Principle: Every object whose surface temperature is above absolute zero (0 K) ra-

diates energy at a wavelength corresponding to its surface temperature. Utilizing our

highly sensitive infrared cameras, it is possible to convert this radiated energy into a

thermal image of the object being surveyed.

The primary goal of infrared thermography is to confirm machinery is running nor-

mally and to detect abnormal heat patterns within a machine, indicating inefficiency and

defects. An increase in electrical resistance will cause local heating. The heat will be

conducted away from the local resistance creating a thermal gradient, generally we can

trace the hottest area and locate the anomaly. Typical hotspot is shown in Figure 1.7.

Normally, infrared photographs are colourized so that objects that emit more heat

radiation than others seem brighter (yellow, red, and white). Cooler objects have darker

blue, purple, or green hues. Although thermal imaging is typically used to detect only

surface temperatures, infrared signals frequently show temperatures within structures.

We have seen different offline approaches for conditionmonitoring. These approaches

9



Figure 1.7: Hotspot Generation

have, in general, one thing in common. They require additional sensor stack. Thermog-

raphy, for example, would require a specialized infrared camera, that is able to capture

wavelengths emitted from the hotspot, and subsequently, register its temperature. Sim-

ilarly, DGA would require spectroscopy equipment to determine the concentration for

each gas component. There are two main disadvantages:

1. Offline condition monitoring requires the machine to be kept off the grid. This

would mean loss of revenue for the end consumers, usual maintenance cycle would

always require interruption of the power supply.

2. The above methods require specialized equipments, that are often expensive and

come under additional costs.

With this view, our focus went towards online condition monitoring system (OCMS).

At the same time, we planned to study whether it is possible to monitor the health of the

electrical transformer, just using the basic parameters that can be obtained using common

measurement devices.

The question still remains, as to how can the instantaneous condition of the trans-

former be quantified. This will be shown in the following section.
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1.2 Health Index

There are many approaches in transformer asset management to tackle such issues and

plan and prioritize the predictive maintenance of transformers. One of the approaches is

a useful calculation technique known as Health Index (HI) calculation. This method not

only allow us to plan maintenance strategies for transformers but also help us to identify

risk and opportunities. Generally there are three parts of HI formulation which are Input,

Computational Algorithm and Output or the interpretation of the calculation part. This

has been summarized in Figure 1.8 [6].

Figure 1.8: Number of power transformer failure per voltage population during 2009–2013

Different test have been conducted on transformers and on basis of that, inputs are

being taken. Some have been discussed in the previous section. The input for HI is usually

obtained from the operating observations, field, site and laboratory testing.

A lot of fomulations have been defined for Health Index. Ballal et. al. [7] represented

health index as,

HI =

∑n
ci=1 SPi

WPi

Smax

∑n
ci=1 WPi

(1.2.1)

Where HI is the health index metric, SPi
is the score of each assessment condition that

is defined based on measured data, Smax is the maximum score of assessment condition,

WPi
is its corresponding weight and n are the number of such conditions.

Different parameters have different weightage according to the degree of importance

given to any particular parameter that affects the condition of transformer [8, 9, 10, 11,

12]. Parameters like Load History and Power Factors have higher weightage as compared
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Table 1.5: Weighing Factor of Various Transformer Parameters

Parameters Weighting Factor

Dissolved Gas Analysis 10, 3

Load History 10

Power Factor 10

Global loss factor 10

Thermo Scan 10

Infrared Thermography 10, 8

Conductivity factor 10

Polarisation Index 10

Furanic Compound content 9, 6, 5

Oil Quality 8, 6

Overall transformer condi-

tion

8, 6

Leakage reactance 8

Winding resistance 8, 6, 2

Bushing Condition 7,5

Frequency Response Analy-

sis

6

DGA of tap changer oil 6

Turns ratio 5,2

Tap changer contact condi-

tion

5

Overall LTC condition 5, 2

Age 4

Paper Insulation factor 4

Internal faults history 4

Dielectric Breakdown test 4

Water content test 3

Surge arrester 3

Cooling equipment condi-

tion

3

Tap changer oil quality 3, 2

Location 3

Main tank corrosion 2

Insulation Resistance test 2, 1

Core to ground connection 2

Oil leaks 2

to weightage given to Age or Location. Different researchers have considered different

weightage for same factor. The number of parameters used in the calculation of HI is also

different among researchers. This has been shown in Table 1.5.
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Table 1.6: Output of Health Index as shown in [12]

HI Condition Action

85-100 Very good Normal maintenance.

70-85 Good Normal maintenance.

50-70 Fair Increase the number

of diagnostic tests,

corrective mainte-

nance or need of

replacement, depend-

ing on the criticity.

30-50 Poor Start planning the re-

placement process or

repair, taking in ac-

count the risk.

0-30 Very Poor Immediate risk

assessment, re-

placement or repair,

depending on the

case.

Several mathematical equations or techniques for the formulation of HI have been

proposed in prior works. Despite the fact that they use the same basic equation, certain

adjustments have been made to make the equations more dependable and scientifically

proven.

The final HI output will be subjected to a specified range, and appropriate preventive

action will be performed. Researchers give varied ranges, and there is no standard for

identifying the range and the preventive measure done. Two specific examples [12, 13]

have been shown in Table 1.7 and 1.6.

The HI method have some limitations as well:

1. The accuracy depends heavily on weighted parameters

2. The condition monitoring may be costly and the results only reflect the preferences

of the human-expert

3. Low accuracy for the systems and devices are controlled linguistically, or have a

contradictory condition

To alleviate some of the issues, we attempt a thorough literature review of recent

advances in health index estimation of transformer.
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Table 1.7: Expected Lifetime based on Health Index as shown in [13]

Health Index Condition Description Approximate

Expected Life-

time

85-100 Very good Some aging or

minor deterio-

ration of a lim-

ited number of

components.

More than 15

years

70-85 Good Significant

deterioration

of some com-

ponents.

More than 10

years

50-70 Fair Widespread

significant

deterioration

or serious

deterioration

of specific

components.

Up to 10 years

30-50 Poor Widespread

serious deteri-

oration.

Less than 3

years

0-30 Very poor Extensive seri-

ous deteriora-

tion.

At end of life
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Chapter 2

Related Work

The monitoring system must make physical measurements and analyse the data in the

context of specific environmental conditions in order to offer information about the trans-

former’s state of health and detect incipient faults. They are crucial for asset management

because they assist in identifying, prioritising, and scheduling essential capital and main-

tenance spending.

Effective ways for monitoring the state and health of distribution transformers could

help utilities avoid failures and degradation before they happen. This will increase de-

pendability and lower the cost of power service in the long run. It’s especially crucial now

since distributed solar, electric vehicles, and other energy resources are rapidly changing

the grid’s operation and putting additional strain on service transformers. Since then,

a variety of methodologies have been utilised to estimate the distribution transformer’s

health. We present a list of approaches for estimating the transformer’s health that have

been published in the literature.

2.1 Health Index Calculation

Health index (HI) calculation is a valuable methodology; it is the most basic method used

to develop transformer maintenance strategies, according to [14]. This method converts

the representative indexes of the transformer’s operation and statement into a quantita-

tive index and evaluates the transformer’s overall condition. A health index calculation

method is used to completely examine the distribution transformer conditions. The trans-
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former’s statement is graded from "perfect health" to "very poor condition." In Section 1.2,

a generic formulation of HI is offered.

2.2 Thermal Model and Loss Life Calculation

Aging or deterioration of the transformer(insulation) is closely related to temperature,

humidity level and the amount of oxygen in the air. The factor which greatly affects the

life of the transformer is temperature. Temperature distribution in transformer is not

uniform, so to find the point whose temperature is the most influencing, a hot spot or

the hottest point on a transformer is used. The aging of the transformer can be evaluated

using HST (Hot spot temperature). The TOT(Top oil temperature) rise in a transformer

depends on the AT(Ambient temperature). HST(Hot spot temperature) cannot occur at a

fix point or location or by any fixed empirical formula. It can be estimated by multiplying

the temperature gradient with hot spot location distance from top oil point and adding to

top oil temperature gives HST. The increase in the TOT value, which is also an increase in

HST, has an effect that can reduce the insulation life of the transformer. Abnormal con-

ditions, such as overloading, supplying non-sinusoidal loads, and the influence of high

ambient temperatures, can accelerate the aging of the transformer. So it can be concluded

that the increase in TOT and HST can shorten the life of the transformer. When the trans-

former is energized and loaded with ambient temperature (AT), the dissipation caused by

core loss, winding loss, and stray losses in the tank, harmonics present as well as metal

support structure, as sources of heat, will cause oil temperature and winding temperature

to increase. To take the harmonic distortion into account, the power loss is modified with

the current factor. The core density, core dimensions, frequency and voltage is taken into

account to calculate the flux density. Top oil temperature is calculated by the method of

heat balance and heat stored method and according to these two factors, Top oil temper-

ature and thereby the Hot spot temperature is obtained. Based on the TOT, the aging

factor FAA is calculated as,

FAA = exp
15000
383

− 15000
θh+273

(2.2.1)

The loss of life factor is incorporated over a period of time to evaluate the insulation heat-

ing effect. Where FAA has a value larger than 1 for winding hottest-spot temperatures
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greater than 110°C and less than 1 for temperatures less than 110°C. Since insulation ag-

ing is a cumulative effect, the percent loss of life per day is the summation of the percent

loss of life [15].

2.3 Fuzzy Logic

Fuzzy logic has been offered as a feasible way to address the constraints of the health in-

dex calculating method. Fuzzy logic is intended to be used for representing vague notions

and unclear information, particularly when standard logic techniques are ineffective. A

comprehensive fuzzy control system has three steps: fuzzification, inference, and defuzzi-

fication. Fuzzification calculates fuzzy values from exact values at the input in the first

stage. To determine the fuzzy value for the output, the fuzzy inference employs all avail-

able fuzzy rules. The defuzzification process extracts the exact output value from the

fuzzy result generated in the fuzzy inference phase [16].

2.4 Machine Learning

2.4.1 Neural Networks

An artificial neural network is a collection of neurons, connected to other neurons in a

layerwise fashion. Each connection is assigned a weight, which is determined by training

the neural network, using training data and a validation set, to check for overfitting (that

is, the network should be generalizable to other scenarios, rather than memorizing the

training set). In this particular case, the inputs to the neural network can be various

transformer parameters. The paper [17] proposes the use of ANNs , with four parameters

as input (voltage, load current, oil level and oil temperature). There are two hidden layers

(with logsig and purelin as the nonlinearities respectively), with the output layer denoting

the health status of transformer. The method provided an accuracy of 97.2% on data

provided by MSEDCL on a 15 kVA, 400/400V three phase distribution transformer. Their

experiment setup is shown in Figure 2.1 and their network architecture in 2.2. As with

online condition monitoring systems, the setup expects an energized transformer. The

input voltage and load current are obtained from the trivector energymeter. Temperature

17



and oil level are obtained from their respective sensing devices. This is fed to the ANN

OCMS system, that converts the continuous signals into digital form.

Figure 2.1: FBD of ANN based OCMS Figure 2.2: ANN Architecture

Another work estimates the health of transformer using two sets of ANNs [18], with

input parameters to the first network beingDGA for gases, Furan, insulation power factor,

O &M (Oil and Maintenance), and age. The output from first network is fed to the second

network, along with a few other parameters like turns ratio test, short circuit impedance,

DC winding resistance, FRA and degree of polymerization. Test results showed an accu-

racy of a max of 92.4 %, on a transformer with primary voltage as 150 kV, under MSEDCL

Indonesia. Its architecture is shown in Figure 2.3.

Figure 2.3: 2 - Tier MLP Network

2.4.2 kNN (k-Nearest Neighbour)

The kNN algorithm is a supervised learning technique that has been used in many ML

applications. It classifies objects based on the closest training examples in the feature

space. The idea behind kNN is to find a predefined number of training samples closest in

distance to a given query instance and predict the label of the query instance from them.
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An example is been shown in Figure 2.4. There are three clusters shown, ω1, ω2 and

ω3. The class assigned to each data point is the cluster to which it belongs. This is made

by measuring the distances of one data point from other data points. If that distance

falls below a set threshold, then it can be considered to be a part of the same class as the

anchor class. So, if an unknown class is given to us, it is possible to determine its class

by measuring the distances to this point from the centroids of the clusters. It would be

assigned the class from which its distance is the least.

Figure 2.4: An example of kNN [19]

2.4.3 Support Vector Machines (SVMs)

The objective of the support vectormachine [20] is to find a hyperplane in theN-dimensional(N

is the number of features) space that distinctly classifies the data points. It is generally

used for binary classification problems. For Multi class classification problems the SVM is

used by breaking the multi class problem into individual binary classification problems.

In the context of health index estimation, the problem can be considered as a regres-

sion problem (SVR). A small illustration has been shown in Figure 2.5. Note that these

points are in a higher dimensional space, just shown in 2D for visualization. The goal

is to determine the ’decision boundary’, at some set distance from the regression plane,

such that points within the boundary lines can be considered to lie on this plane. This

can be considered as a margin of tolerance. Lower its value, better will be the fit of the
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hyperplane.

Figure 2.5: Support Vector Regression

2.4.4 Decision Trees

Decision Tree is a Supervised learning technique that can be used for both classifica-

tion and Regression. A decision tree is a tree-like structure composed of internal nodes,

branches, and leaf nodes. where internal nodes contain dataset properties, branches rep-

resent decision rules, and each leaf node represents the result. Each internal node repre-

sents a test on an attribute, each branch represents the result of a test, and each leaf node

represents a class label. The root node is the tree’s highest node. A decision tree is a class

discriminator that separates the training set recursively until each partition is wholly or

primarily composed of samples from one class. Several papers [21, 22] presented this

technique for health estimation of transformers and compared it with techniques like

random forest, support vector machines and kNN.

2.4.5 Random Forest

Random forest [23] is a classification and regression ensemble learning approach that

involves merging numerous classifiers to tackle a complex problem and enhance the

model’s performance. Random Forest is a classifier that combines a number of decision

trees on different subsets of a dataset and averages the results to increase the dataset’s

predicted accuracy. Instead of depending on a single decision tree, the random forest

collects the forecasts from each tree and predicts the final output based on the majority
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votes of predictions. The bigger the number of trees in the forest, the more accurate it

is and the problem of overfitting is avoided. This method has been used to estimate the

health of transformer in [21]. This particular paper aims to gauge the health of a service

transformer (in the form of four categories - good, fair, poor and very poor) from loading

profile, vibration and oil temperature. The output is obtained from a machine learning

algorithms, particularly support vector machine, decision trees, random forest and k -

Nearest Neighbors. The inference is that Random Forest Algorithm performed the best,

along with kNN.

Figure 2.6: Algorithms used in [21]

2.5 Linear Regression

In linear regression, the dependent variable is a linear combination of the parameters. It

has been widely used for predictive modeling. The equation of linear regression can be

written as follows:

y = θ1x1 + θ2x2 + ...+ θnxn (2.5.1)

Where y is the dependent variable, x are the independent variables and θi, i = 1, ..., n are

the coefficients. These are the weights assigned to to independent variables.

The overall goal of linear regression is to find the line of best fit (Figure 2.7) to the

data points. For a given hypothesis line, it is possible to find the residuals (distance of

the data points from the line) and minimize it. There are three ways of quantifying these

residuals:

1. Sum of Residuals

∑
(Y − h(X)). It allows positive and negative errors to be can-

celled.
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2. Sum of absolute value of residuals

∑
|(Y − h(X))|. The use of absolute value

prevents the positive and negative error to be cancelled.

3. Sum of square of residuals

∑
(Y −h(X))2. This method ensures that higher values

of error are penalized more. This is the most used residual.

Figure 2.7: Line of Best Fit for 2D Data [24]

For each point, a corresponding residual value can be obtained. Adding it for all the

points in the data, we get required cost function.

J(θ1, ..., θn) = J(Θ) =
1

2m

m∑
i=1

(hΘ(x
(i))− y(i))2 (2.5.2)

Where m is the number of data points, h is the hypothesis linear function to be deter-

mined, parameterized by θ1, θ2, ..., θn. Notice that the equation is the same is sum of

squared residuals, except the addition of
1
2m

to ease the mathematics.

The cost function can be minimized using a technique known as ’Gradient Descent’.

It takes into account the instantaneous slope at a point, and then updates the weights,

along the direction of the gradient, in proportion to its magnitude. It can be represented

as,

θi := θi − η
∂J

∂θi
(2.5.3)

Where J is the cost function, η is known as learning rate. This formula updates the

parameter θi. Similar thing will be done for all parameters.

Care must be taken to choose an appropriate value of learning rate. Keeping a high

learning rate would mean that gradient descent would take larger steps, and might miss
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the minima, resulting in further divergence (overshoot). Having a lower learning rate

would mean that step size would be lower, therefore more number of iterations. There-

fore, an optimal value of η is to be required.

2.6 Hidden Markov Model

Hidden Markov Models (HMM) can be used to transform various data collected from

substation equipment into failure probabilities. A quantitative decision tool based on

these failure probability might be developed and utilised in system-level simulation and

testing. One of the prediction approaches that may be used to determine the future states

of transformers based on HI is the Markov Model (MM). The Markov decision process is

a memoryless process that uses a probabilistic estimate to anticipate the future condition

of equipment. This paper [25] discusses the use of hidden markov model for prediction

of health of transformer.
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Chapter 3

Dataset

3.1 Overview

For the field test of transformer, many organizations such as Maharashtra State Electric-

ity Distribution Company (MSEDCL) [26], National Electrical Manufacturers Association

of USA (NEMA) [27], Asset Management and Health Assessment Consulting Company

(AMHA) [28], etc., have compiled a lot of data from many transformers (both power and

distribution). However, much of their data is restricted to individuals affiliated with the

respective organizations. To alleviate the issue of lack of data, we propose a novel dataset

for distribution transformer, along with the health index for each instant.

We acquire the electrical specifications from Maharashtra State Electricity Distribu-

tion Company Limited (MSEDCL), for various distribution transformers, classified on the

basis of their rating. We use three sets of distribution transformers. Their nameplates are

shown in Figure 3.1, 3.2 and 3.3.

Additionally, we consider BEE (Bureau of Energy Efficiency) star ratings of 3 and

5. Therefore, we get a total of six scenarios, for different power and BEE star ratings.

This would impact the constant power loss occurring in the transformer. Higher the BEE

rating, lesser will be the loss. Relevant standards have been set by Maharashtra DISCOM,

pertaining to power loss corresponding to a particular ’kVA’ range and BEE rating can be

seen in [26].

We propose the transformer setting in the city of Nagpur, for a period of ten years

(2011 - 2020), where readings will be taken every three hours. This means the number of
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Figure 3.1: Transformer 1 Figure 3.2: Transformer 2 Figure 3.3: Transformer 3

readings for this setting will be 29, 224 per transformer.

3.2 Ambient Temperature

We obtain the ambient temperature, from the data open - sourced by the Indian Meteoro-

logical Department (IMD) [29]. The data is presented as a binary file, consisting of grids

in the map of India, as shown in Figure 3.4.

Figure 3.4: Map of India divided in grids for Temperature Measurement

We convert the gridded binary file to a text file, having maximum and minimum tem-

peratures for each area. We consider the area in and around Nagpur (we take Lat. 21.50°N,
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Long. 79.50°E) and consider temperatures for the month of April.

The data provided by IMD consists of the maximum and minimum temperature for

each day. Therefore, we linearly interpolate to ensure we have a total of 8 readings per

day. Given two points (x1, y1) and (x2, y2), we can obtain the reading for the point be-

tween them as,

y = y1 + (x− x1)
y2 − y1
x2 − x1

(3.2.1)

Intuitively, this represents traversing a line segment between two points (x1, y1) and

(x2, y2). Therefore for a day, we have two temperature readings, maximum andminimum

temperature.

3.3 Oil Temperature Rise Calculation

We assume the transformers has a cold start (the initial temperature rise is zero, that is the

temperature of transformer is the same as ambient temperature). As per IEEE Standard

C57.91-1995, [30, 31], we can obtain the thermal capacity of transformer as,

CDT = 0.0272Wc + 0.0272Wt + 7.305Θoil (3.3.1)

Where Wc represents weight of core and coil assembly (in kilograms), Wt is the weight

of tank and fittings (in kilograms) and Θoil represents the volume of oil (in litres).

The general expression of top oil time constant is,

τTO = τTO,R

(
∆ΘTO,U

∆ΘTO,R

)
−
(

∆ΘTO,i

∆ΘTO,R

)
(

∆ΘTO,U

∆ΘTO,R

) 1
n

−
(

∆ΘTO,i

∆ΘTO,R

) 1
n

, τTO,R = C
∆ΘTO,R

PT,R

(3.3.2)

Where τTO,R is the top oil time constant at rated load, ∆ΘTOU
represents ultimate

top oil rise over ambient temperature for load L, ∆ΘTO,i represents initial top oil rise

over ambient temperature,∆ΘTO,R is the ultimate top oil rise over ambient temperature

at rated load, C is thermal capacity and PT,R is the power loss at rated load. Here, n

represents the exponent of heat loss q in the expression∆ΘTO = kqn. If the assumption
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of direct proportionality holds for heat loss, n = 1.0,

τTO = τTO,R (3.3.3)

The top-oil temperature rise at a time after a step load change is given by the following

exponential expression,

∆ΘTO = (∆ΘTO,U −∆ΘTO,i)

(
1− exp

(
−t

τTO

))
+∆ΘTO,i (3.3.4)

For each time step, the initial and ultimate temperature rise can be obtained as,

∆ΘTO,i = ∆ΘTO,R

[
K2

i R + 1

R + 1

]n
,∆ΘTO,U = ∆ΘTO,R

[
K2

UR + 1

R + 1

]n
(3.3.5)

WhereR is the ratio of load loss at rated load to no load loss,K is the ratio of specified

load to rated load. From Section 3.1, we have the transformer loss at different loadings

(50% and 100%). The ratio R can be determined as,

R =
K − 1

0.25−K
+ 1;K =

PT,R/2

PT,R

(3.3.6)

Where PT,R/2 is the loss at half the rated load. Similarly,K can be obtained as,

K =
I

Ir
(3.3.7)

Where Ir is the rated current and I is the instantaneous current per phase. For the

three phases, the value of K can be averaged across them.

3.4 Loading

The most variable parameter for any transformer is the load. The scenario we have taken

load variation for all three transformers. Load profiles for three different scenarios have

been shown in Figure 3.5, 3.6 and 3.7.

The load variation for the residential load has been designed taking into account that

during the evening hours, the power consumption is relatively high than afternoon or the
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Figure 3.5: Residential Load

%
Figure 3.6: Commercial Load

%
Figure 3.7: Industrial Load %

morning hours. However, during the early morning hours, the load is quiet low as the

daily chores are almost over are yet to start and only a few constantly running appliances

are consuming the power.

For the commercial load, profile has been designed taking into account the average

market rush trends. Therefore, during morning working hours, the load is high. During

the late evening hours, there is a maximum demand of power for lighting as well for the

increased consumer count.

In the industrial load, taking into account the maintainable and shutdown work dur-

ing the midnight, and the main production during the day hours, the load profile has been

made.

These load variations have directly been applied in the current profile for all three

phases. Along with this the randomGaussian noise has been added in this characteristics.

The noise has been added in only one phase and other two phases have been designed in

such a way that the total deviation from the mean/ rated current value remains zero.

To take into account the error in the measurement of the transformer parameters, the

we have added random values in between the rated current with deviation as mentioned

above. For these we have chosen around 1% of the total data points at a random have

added abruptly high and/or low values at this points as depicted below. At the same time,

a total of 10 fault locations are added at random locations, where the load collapses to

zero.

28



3.5 Oil Leakage Factor

It is always observed that during the working tenure of any machine, there is leakage in

its component liquid constituents. May it be insulation oil or be it fuel. In case of our

three transformers, to consider the oil leakage, we have added a function that updates

itself with each iteration and hence degrades oil volume and eventually thermal constant

over the period of time.

Now the loading and ambient temperature data being ready with us we update the top

oil temperature rise with every iteration and accordingly update the transformer temp-

tation sire and the transformer temperature as per the previously explained equations.

3.6 Per Phase Current and Voltage Calculation

We have the rated voltage per phase as 0.433/
√
3kV on the LV side. To incorporate

variation in loading, we add Gaussian Noise to the resultant current from the given power

rating and LV side voltage. The random sequence is generated by sampling from a normal

distribution, and added to voltage for each phase. Following [7], we also calculated the

unbalanced voltage VU . As per NEMA, the unbalanced voltage is defined as,

VU =
σmax(Vab, Vbc, Vca)

µ(Vab, Vbc, Vca)
(3.6.1)

Where σmax is the maximum deviation and µ is the mean of line voltages. The unbal-

ance in harmonics and voltages results in the unbalance and harmonics in currents. This

can increase the core, copper and eddy current losses.

To incorporate degradation with time, we increase the variance of the sampling dis-

tribution, so that the randomness increases with time.

We also calculate current and voltage variation for three phase system [14].

∆IDT =

√
1

3
(|Ia − Ir|2 + |Ib − Ir|2 + |Ic − Ir|2) (3.6.2)

∆VDT =
1

3

(∣∣∣∣Ur − Ua

Ur

∣∣∣∣+ ∣∣∣∣Ur − Ub

Ur

∣∣∣∣+ ∣∣∣∣Ur − Uc

Ur

∣∣∣∣) (3.6.3)
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3.7 Health Index Estimation

Since dataset will require a ground truth, we propose to determine a ground truth health

index for each reading. This will help in the supervised training for learning based meth-

ods.

For the calculation of health index, the following parameters are utilized: Phase volt-

ages and currents, top oil rise temperature with ambient temperature, transformer load-

ing and 3 phase current variations. This accounts for 11 different characteristics.

Define the data matrix X of size 29224× 11.

We used the health index values on a yearly basis for the transformer from [25]. We

then linearly interpolate the values. Additionally, we penalize the places where the trans-

former is abnormally overloaded (1% of the total data points). Also, the HI value is

slashed to zero for 10 potential fault points. A more refined statistical approach to es-

timate ground truth health index using data points could be a future scope of this work.

3.8 Data Visualization

All the experiments have been performed using MATLAB, except ambient temperature

acquisition, which was done using Python. A subset of the readings have been shown

here.

3.8.1 Phase Voltages

Figure 3.8: Phase Voltage a Figure 3.9: Phase Voltage b Figure 3.10: Phase Voltage c

30



3.8.2 Phase Currents

Figure 3.11: Phase Current a Figure 3.12: Phase Current b Figure 3.13: Phase Current c

3.8.3 Transformer Oil Temperature

Figure 3.14: Top Oil Rise Figure 3.15: Ambient Temp. Figure 3.16: Oil Temperature

3.8.4 Miscellaneous

Figure 3.17: Loading Figure 3.18: Health Index

Figure 3.19: Current Devia-

tion
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Chapter 4

Results and Evaluation

With the obtained dataset, it is possible to evaluate different approaches under Chapter

2. The dataset for all six cases of a single distribution transformer is considered overall

as a single set. The set is divided into train and test set, in the ratio 7 : 3 (70% allocated

for training and the rest for testing).

4.1 Benchmark Details

In order to compare different methods, we use Coefficient of Determination. It provides a

measure for goodness of a fit of model. In other words, it tells us how well the regression

line fits the actual data. Mathematically, it can be represented as,

R2 = 1− SSR

SST

= 1− (yi − ŷi)
2

(yi − y)2
(4.1.1)

Where SSR is the sum squared regression (sum of residuals) and SST is total sum of

squares. The range of R2
is between 0 and 1.

It is possible to obtain negative values ofR2
, that is, trend of the data will be converse

of the trend observed by the regression model. Negative values imply that the data fitting

is extremely poor. An example is shown in Figure 4.1. From this, we can infer that having

a value close to 1 is required. It would mean that the regression line is fitting the dataset

well.

In real - life, however, getting R2
close to 1 is not possible, due to the presence of

outliers in the data. As shown in the previous chapter, the proposed synthetic dataset
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Table 4.1: Coefficient of Determination R2
using Neural Network

Method* 25kVA 63kVA 100kVA

NN + Linear -0.2538 0.2542 0.2450

NN + Logsig 0.5642 0.7452 0.7056

DTR 0.6029 0.5740 0.6234

RFR 0.7511 0.7228 0.8066

LiR 0.7946 0.7966 0.7993

RR 0.7946 0.7966 0.7993

LaR 0.7943 0.7946 0.7974

*NN: Neural Network, DTR: Decision Trees Regression, RFR: Random Forest Regression, LiR: Linear Regression,
RR: Ridge Regression, LaR: Lasso Regression

incorporates fault and overloading conditions as well. Therefore, such points can never

be fitted to the regression line. Nevertheless, we hope to get R2
as high as possible.

Subsequent sections would elaborate on the implementation and results obtained from

different methods.

Figure 4.1: Coefficient of Determination Cases

A summary of the results is shown in Table 4.1.

4.2 Neural Network

We have considered a two layered neural network. The input is the 11 - dimensional

input vector, representing the current state of the transformer. The output is a single

value, representing the health index. There is an intermediate layer having 50 neurons.

The model architecture is shown in Figure 4.2.

33



Figure 4.2: Neural Network Architecture

The training data consists of 1, 22, 740 data points. A total of 5, 000 epochs are set

and training is done using Gradient Descent. Total training time is close to 5 minutes,

per transformer. The results are shown in Figure 4.3, 4.4 and 4.5.

Figure 4.3: NN: 25kVA Figure 4.4: NN: 63kVA Figure 4.5: NN: 100kVA

The actual health index, shown on the bottom half of the graph, represents two re-

gions of the transformer. The first half represents the declining health of transformer, dur-

ing its final stage. The second half represents the health of a newly commissioned trans-

former. The upper half represents the health index calculated by the proposed method.

It can be seen that neural network is not able to model faults properly. Additionally,

in Figure 4.5, health index values go way past 50% of the maximum possible value.

To alleviate this, we used a sigmoid function. Given a value x, its sigmoid can be

represented as,

sigmoid(x) =
1

1 + e−x
(4.2.1)

MATLAB represents this function using ’logsig’. The overall network can now be shown

as in Figure 4.6.

Training parameters are the same as before. The results are shown in 4.3, 4.4 and 4.5.

The issues are similar to what is observed without ’logsig’. The faults aren’t being

detected. At the same time, while the methods was able to learn the overall trend of the

graph, it cannot detect the appropriate range of health index values.

The coefficient of determination for the two cases are shown in Table 4.1. It can be
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Figure 4.6: Neural Network Architecture with Sigmoid Function. Notice the Second Layer

Figure 4.7: NN: 25kVA Figure 4.8: NN: 63kVA Figure 4.9: NN: 100kVA

seen that using sigmoid ensures that the health index values remain between 0 and 1.

This improves the overall R2
value drastically.

4.3 Support Vector Regression

We have implemented SVR with python. The objective of SVM algorithm is to find a

hyperplane in an N-dimensional space that classifies the data points. The dimension of

the hyperplane depends upon the number of features. If the number of input features is

two, then the hyperplane is just a line and if the number of input features is three, then

the hyperplane becomes a 2-D plane. A library, known as sklearn, has been used for this

purpose. We used the Radial Basis Function (RBF) kernel. The coefficient of kernel has

been determined as,

γ =
1

n ∗ var(X)
(4.3.1)

Where n represents number of features and var(X) represents variance of the input data.

To avoid overfitting (discussed in Linear Regression), we used L2 regularization, with a

coefficient of 1. The results for the same are shown in Figure 4.10, 4.11 and 4.12.

Notice that the overall health index obtained doesn’t show stochastic nature. This

is due to the fact that SVR fits the plane in a higher dimensional space. Therefore, only

the points in and around the plane are registered. Therefore, all the points are obtained
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Figure 4.10: SVR: 25kVA Figure 4.11: SVR: 63kVA Figure 4.12: SVR: 100kVA

Table 4.2: Resultant Decision Tree for Different Transformers

Characteristic 25kVA 63kVA 100kVA

No. of Leaves 1, 19, 308 1, 19, 562 1, 19, 530
Depth 70 74 78

against the fitted line.

4.4 Decision Trees

Training is done using python, with sklearn library. After training, the number of leaves,

along with the depth of the tree are registered, shown in Table 4.2. Results are shown in

Figure 4.13, 4.14 and 4.15.

Figure 4.13: DT: 25kVA Figure 4.14: DT: 63kVA Figure 4.15: DT: 100kVA

While theR2
score isn’t as high as neural networkwith sigmoid, it is able to determine

faults perfectly. Surprisingly, the fault detection accuracy of decision trees is 100%. So

while the method is more accurate, the reason for lesserR2
is lesser precision. The output

is comparatively more noisy than the ground truth.
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4.5 Random Forest

Similar setting for random forest is used as for decision trees. The number of trees in the

forest are set to 100. Results are shown in Figure 4.16, 4.17 and 4.18.

Figure 4.16: RFR: 25kVA Figure 4.17: RFR: 63kVA Figure 4.18: RFR: 100kVA

The results are similar to decision trees as well, however the noise is much lower.

Additionally, the R2
value is much higher (Table 4.1), even more then neural network

based approach. The fault detection accuracy is again 100%. It will later be inferred that

random forest is the overall best method in terms of coefficient of determination.

4.6 Linear Regression

As discussed earlier, Linear Regression will be used to determine 11 parameters, each

representing linear combination of the input feature. The training will be done using

gradient descent. Implementation is done using MATLAB. The results are shown in Fig-

ure 4.19, 4.20 and 4.21.

Figure 4.19: LiR: 25kVA Figure 4.20: LiR: 63kVA Figure 4.21: LiR: 100kVA

Additionally, we try two different variations of linear regression, namely ridge and

lasso regression.
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4.6.1 Ridge Regression

Before understanding ridge regression, it is important to understand regularization. Often

there is a condition, where the algorithm has learnt the data too much. However, the

problem is that the method would not generalize well to new set of data. A model is

supposed to learn the general trend of the data, rather than memorizing the entire dataset

and fitting each and every one of the points. In machine learning, such a condition is

known as overfitting. It is not easy to exactly pinpoint where exactly the model starts to

overfit, as the training progresses.

To alleviate this, there is a technique known as regularization, where additional loss

term is added to the cost function. Mathematically, it can be represented as,

J(θ1, ..., θn) = J(Θ) =
1

2m

m∑
i=1

(hΘ(x
(i))− y(i))2 + λ||Θ||2 (4.6.1)

Where λ is the penalty factor, indicating the contribution of the regularization factor. It

should be important to set the λ parameter right. Having the value too high would imply

that the model would underfit, which is the converse of overfitting (model doesn’t fit the

data properly).

Ridge regression, as shown in Equation 4.6.1, uses L2 regularization technique. We

use λ = 1.0. Results for the same are shown in Figure 4.22, 4.23 and 4.24.

Figure 4.22: RR: 25kVA Figure 4.23: RR: 63kVA Figure 4.24: RR: 100kVA

4.6.2 Lasso Regression

Lasso (or LASSO) stands for Least Absolute Shrinkage Selector Operator. It is quite similar

to ridge regression, but it uses L1 regularization technique.
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J(θ1, ..., θn) = J(Θ) =
1

2m

m∑
i=1

(hΘ(x
(i))− y(i))2 + λ||Θ||1 (4.6.2)

Similar to ridge regression, we use λ = 1.0. Its results are shown in Figure 4.25, 4.26

and 4.27.

Figure 4.25: LaR: 25kVA Figure 4.26: LaR: 63kVA Figure 4.27: LaR: 100kVA

As it turns out, using regularization would not significantly change R2
. On the other

hand, the use of Lasso regression improves the health index graph andmakes it smoother.

From the above results, we can imply that while linear, ridge and lasso regression

boast higher coefficient of determination, it is random forest that is able to detect all of

the faults, while being the best correlation amongst random forest and decision trees.
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Chapter 5

Conclusion and Future Work

From the previous chapter, we draw the following conclusions:

1. Neural Network gives good R2
value, and is able to give a general overview about

the health index of transformer. However, it isn’t precise.

2. Using ’logsig’ transfer function instead of the linear output improves the results to

a great extent. However, the problem mentioned in first point still arises.

3. Support Vector Regression and Lasso Regression give the smoothest health index

curve with time.

4. Decision Trees and Random Forest are able to model 100% of the faults. No other

method was able to do this.

5. Linear Regression and its variations obtain the best fit to the model. However, their

design restricts them from detecting outliers, specifically faults.

6. Overall, we can conclude that Random Forest is the optimal approach for detecting

faults, and estimating an optimal range of health index.

In this work, we propose a new synthetically created dataset using the transformer

parameters, based on standards. We alsomanage to test our dataset on a series of machine

learning based approaches. Despite our best efforts to fabricate a dataset and modeling

it closer to real transformer, it is not immune to certain flaws. First is the artificial ad-

dition of noise in the data. While this will give a certain randomness to the data, it is
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certainly not the most accurate representation of the actual working of transformer. Sec-

ond is the health index calculation scheme, which can certainly have potential areas of

improvement, particularly the use of refined statistical approaches. There can be fur-

ther investigation that can be done on this particular aspect, since current approaches

mostly rely on the opinion of experts, which incorporates subjectivity in the grading of

transformer health.

Due to the pandemic, a majority portion of our time was spent in fabrication of the

dataset and testing on different models. We feel that it is possible to extend this work

to a real time transformer, in the form of Online Condition Monitoring System (OCMS).

Additionally, this approach can be extended further for time series analysis, anomaly

detection and forecasting.
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